
by David
Nicholson-Cole

GDL—Taster

Introduce yourself to GDL

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 2

GDL—Taster
Teach yourself GDL by the fast track!

THE GDL Cookbook is a collection of models which have
been produced to help teach GDL. Each model is accompa-

nied by explanatory text and images. The models are graded and
organised to give a ‘Cookbook’ style of progressive learning.

GDL-TakeAway will be a fast track route to GDL based on
the Author’s Lift Off courses. Early courses, with more time

available for personal tuition, were based on the original Cook-
book. But the Cookbook grew bigger and bigger and became the
major work of reference and self teaching that it is now. The GDL–
TakeAway is not yet published, but the author of the Cookbook is
working on the Takeaway project.

THIS little GDL-Taster Document is a short taster giving you
some of the material in the introductory pages of the GDL-

Takeaway and the GDL Cookbook, and you will save time if you
read this prior to coming on a GDL Lift Off course with David
Nicholson-Cole, or anybody teaching GDL in your area.

The GDL–Cookbook is published by Marmalade Graphics, Nottingham
©1999.

Marmalade, 15 Elmtree Ave, West Bridgford,
Nottingham NG2 7JU, England

Tel +44-115-945-5077 : Fax +44-115-945-5121: email:
davidnc@innotts.co.uk

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 3

The Cooking Metaphor

THE ORIGINAL GDL manual is not well explained, and has
too few examples. The ‘Cookbook’ approach to learning is de-

signed to change what seems like a daunting task into something
enjoyable and useful.

The cooking metaphor suggests that you will learn some GDL
instantly. If you plough quite forcefully through the GDL Cook-
book and the GDL Manual, you will learn it rapidly. However, you
also need some real projects to test your skills and force you to try
advanced techniques before you acquire proficiency to the level of a
GDL Voyager.

The design environment is constantly changing – no sooner had
the GDL Cookbook settled down to a level of completion in 1999
than I was having to adjust to the very welcome arrival of ArchiCAD
6.5 in January 2000.

Smart, Parametric Models

YOU are truly privileged. You are the only members of the CAD
community who have the ability to built PARAMETRIC ob-

jects without needing a degree in Computer Science. Quite simply,
‘Parametric’ means that you can change the parameters of an object.
With GDL, it also means that the object can be ‘smart’ – change its
own parameters according to rules or calculations. Thus it can dis-
play a level of ‘artificial intelligence’. This is the power of GDL!

In other CAD software, if you stretch an object, it will stretch,
but the elements of the object will be distorted proportionally.
Whereas, with a parametrically built window, handrail, stair or struc-
tural truss tool, it can be written to recalculate the spacing of mem-
bers, to resize members if necessary, correct user’s errors, offer the
user intelligent choices through pop-down menus in the object, and
change the way it looks at different scales or distances. All these
techniques are covered in GDL TakeAway and in the GDL Cook-
book.

GDL is poised to go “Cosmic” in the year 2000 when Graphisoft
make it available to other CAD environments. This is a useful skill
to teach yourself.

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 4

Reasons why you need not learn GDL
• You can already make library objects using the Wall, Slab and Roof tools.
• You are contented with the existing ArchiCAD library.
• You can get CDs of more objects.
• You can pay a bureau to make 3-D objects when the need arises.
• A lot of the work you do is 2-D and doesn't need 3D modelling.
• It looks difficult – the GDL manual makes you shudder, just looking at it.
• You can't remember trigonometry or circle geometry, and cannot program.
• None of the objects you make need to be 'smart' or elegant, or get repeated.

Reasons why you should learn GDL
• You can make insanely great things that, for interest and complexity, go far

beyond library objects made with wall, roof and slab tools.
• You can make ‘tools’ – such as a joist tool, louvre tool or a handrail tool –

that increase your productivity.
• You can make parametric models – i.e. an object that offers you a dialog box

with the means of changing its height, diameter, colour, frequency, style etc.
• It is very economical in disk space – GDL models only occupy the disk size

of a script plus a small header and footer.
• You speed up rendering time; objects can be written with clean coding, un-

like the dirty code produced by DXF or library objects made with wall, roof
and slab, which needlessly calculate forms to a millionth of a metre accuracy.

• You can have really cool features like modestly intelligent objects which com-
plain if you enter wrong parameters; offer you options in the language of
your choice; offer you popdown menus to assist you with choosing param-
eters; which dynamically turn to face the camera; or change colour or shape
as their position in the model, storey, or camera location changes. They can
even consider whether to bother drawing themselves or not.

• You can do a useful cleaning up job on objects created with wall, roof and
slab tools, if you know a bit of GDL.

• You can increase the level of detail in a model by being firmly in control of
the number of polygons.

• It’s fun, and easy once you get the hang. It is enjoyable to use simple math-
ematics and programming skills to see 3D forms popping out of the screen
in front of your eyes!

• You can discover a new source of income, writing GDL objects for other
users: this skill could be career changing if you get addicted.

Clearly, the reasons to use GDL far outnumber the reasons not to(:-) This
GDL-TakeAway makes it easy to progress through the learning process, and
to enjoy the benefit of GDL.

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 5

Introducing GDL

GDL commands in their raw state are available to you in the GDL manual.
It is difficult to understand their use and syntax until you have to apply

them for real. Therefore, the cookbook approach in this book gives you an
easier way of learning them by doing small projects, a bit at a time. The Cook-
book method – being based on small projects growing in complexity – is analo-
gous to the process of architectural education.

SCRIPTING is easier if you understand the 3-D nature of the object. You
must analyse the object accurately, regardless of the language you are using

or thinking in. For architects and designers who are in the business of 3-D, this
should be the easiest part.

IN THE EARLY DAYS of ArchiCAD (before Mac or PC) the
prototype of ArchiCAD was on the Apple 2. Not having a mouse

or windows, ArchiCAD was GDL – a scripting language to pro-
duce 3D form. The arrival of the Macintosh enabled program-
mers to put the building plan into one window, the building tools
into another (to form a ‘pallette’), coordinates in another, and so
on. ArchiCAD as we know it now became visible. Designers could
now drop walls and other building elements into a plan window,
and stretch them to fit and change their properties; view the 3-D
results in another window. GDL survived as a speciality, evolving
in its own way.

Geometric
Description
Language

GDL commands

3D Organisation

Introducing GDL

GDL commands
Produce 3D entities – like

BLOCK, SPHERE, CONE,
TUBE.

3D organisation
Look at the object analyti-
cally and understand what

3D shapes it contains.

Programming
The organisation of the

script in a structured way,
correctly sequenced.

Interfacing with A’CAD
Enable the object to respond

to conditions in the main
project.

Working with GDL consists of four main areas
of knowledge:

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 6

You may not be able to build the object in every detail, but you should look
at it, and decide what parts of it need to be included. This is called the ‘level of
detail’ (LOD). In an urban model, buildings might be represented as simple
slabs. At city block level, you would show roofs, but not windows. At single
building level, you might show window openings, but not gutters or sills. At
roof detail level, you would decide whether to show individual tiles and battens.

The universal language of 3D is the 3D primitive – the Block, Cylinder,
Cone, Sphere, Extrusion etc. Almost everything can be made with combina-
tions of these. At the next level of 3D interpretation, you have slabs which
curve, holes drilled, surfaces rounded or chamfered, extrusions taken through
curved or angular pathways, saddle shapes, lathed objects, elements repeated
around axes, and many such variations.

You also decide how the object behaves if is to be stretched or hinged. You
must identify elements which might change, like lights which come on, parts
that must be able to slide or rotate, or to disappear if they are too detailed, or
which might be generated by random numbers.

Think these out on paper. If you cannot draw the object freehand in pencil,
then you probably cannot script it.

A PROGRAM is just a sequence of instructions. You can read instructions
to someone over the telephone, you can struggle through the instructions

for setting the controls on your video, you can explain a cookery recipe to a
friend, or plan the most efficient way of mowing the lawn. There is even a
program in making a cup of tea! In all these cases you use a program, even if you
don’t think of it as a program. Suppose you write down the sequence of tasks,
you would be sure to get them into the right order, to avoid doing tasks you had
just done, or doing tasks that would undo ones you had done. You can write the
sequence as a series of pictures, or as written commands. That’s all there is to it!

Which language would you use? For cookery, you would speak in English,
or German or Spanish, but you would use similar food ingredients. For GDL,
you use the language of BASIC, and your ingredients are commands like BLOCK
and CONE and TUBE. BASIC is the easiest of the major programming lan-
guages, devised in the seventies, and predominant on micros during the eight-
ies. BASIC is easy to learn. Graphisoft must be thanked for choosing BASIC as
the model for their programming language. We can all write a few lines of code,
and see 3-D objects springing up into existence. It is fun! One's capabilities are
vastly increased – in the ‘old days’ of programming, BASIC could build menu
driven programs for dull things like accounts and calculations, many of which
were far easier to do in spreadsheets. Now, towers, chairs, bridges, trains, space
structures, buildings and people can all grow from your keyboard.

GDL objects can behave slightly intelligently in that they can know current
wall thicknesses, storey, scale, frame number, location, current pen and so

forth, and behave accordingly.

Programming

Interfacing

Introducing GDL

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 7

So, you think you can’t
program...
WELL YOU CAN! – squirrels can program, birds can pro

gram, spiders do it, small children do it – in that they plan a
series of actions, they try to get them in the right order, they correct
their own mistakes when they make them, and they achieve a result
– perhaps a hoard of nuts, a nest full of eggs, a web, or a Lego model.

The British Standards Institute recently (Sept ‘99) received the ‘Ig Nobel’ Prize
for Literature in that they wrote BS.6008: Method for Preparation of a Liquor of
Tea, and took 5000 words to do it, going into the minutest detail! We will not go
quite so far, but let’s use tea making as an example of human programming. Let’s
write down a series of ‘Operations’ involved in making Tea. Without going into
too much detail, list the sequence of operations to someone who knows the obvi-
ous things like how to turn on taps. Anybody reading this (above the age of 7)
should be able to recite the following list in the right order.

1. Fill Kettle with water
2. Boil water
3. Get teapot
4. Fill teapot with bags
5. Fill with water
6. Get cups
7. Wait until ready
8. Pour out
9. Add Milk
10.Serve Tea

100: !Fill Kettle with water
200: !Boil water
300: !Get teapot
400: !Fill teapot with bags
500: !Fill with water
600: !Get cups
700: !Wait until ready
800: !Pour out
900: !Add Milk
1000:!Serve Tea

Now because we are going to teach a computer how to make tea, you need to
rewrite the list giving each Operation a number(with a colon), and use an excla-
mation mark to make each Operation name into a Label. For a human, you might
number each task 1, 2, 3, etc, but for computers its easier to use larger numbers
(because later, you could insert extra things you hadn’t thought of.)

Next, you look at each Operation and realise that none of them are single
Actions. Each Operation consists of a number of Actions which might include
Error Checking. For example, if the teapot contains last night’s teabags, then Wash
Teapot. This might require quite a lot of IF statements, and then the Actions
taken as a result of the IF statements. Depending on the level of knowledge or
stupidity of the machine, you instruct it appropriately. For example we assume
here that the machine knows how to turn a tap or a kettle on. In the same way,
GDL knows that Cylinders are round and that Cones are tapered and round with-
out us having to define ‘roundness’ mathematically.

1 2

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 8

100:!Fill Kettle with water
IF kettle (empty) THEN (Fill kettle with water)
IF kettle (filled) THEN GOTO 200:!Boil water

200:!Boil water
IF water (boiling) THEN (turn kettle off) ELSE (boil water)

300:!Get teapot
IF (number of people) less than 2.01 GET smallteapot
IF (number of people) greater than 2 GET largeteapot
IF teapot (dirty) THEN (wash out teapot) UNTIL (clean)
IF teapot (clean) THEN (swirl hot water) UNTIL (warm)
IF teapot (warm) THEN (Fill teapot with bags) !continue

400:!Fill teapot with bags
LET teatype=USERCHOOSE(EarlGrey,Lapsang,Camomile,Tetleys)
IF teapot (large) THEN add 2 teabag USING teatype
IF teapot (small) THEN add 1 teabag USING teatype

500:!Fill with water
POUR water INTO teapot UNTIL (full)
IF (not enough water) THEN GOTO 100:
PLACE teacosy UPON teapot
START timeclock USING seconds

600:!Get cups
REPEAT (in cupboard)
 GET (a cup)
 IF (cup dirty) THEN (wash cup)
 PLACE cup ONTO teatray
 UNTIL (enough cups for everybody)

700:!Wait until ready
IF TIMECLOCK less than 120 seconds THEN WAIT

800:!Pour out
REPEAT (on the teatray)
 IF fullness=0 THEN POUR (a cup) UNTIL fullness=7/8
 UNTIL (enough cups for everybody)

900:!Add Milk
LET milkcondition=USERCHOOSE(with milk,without milk)
 REPEAT (for each cup on the teatray)
 IF milkcondition=(with milk) THEN (add milk to cup)
 UNTIL (each cup tested)

1000:!Serve Tea

OK, we can’t all be perfect. The British Standard says put the milk in the
cup first, and of course, I haven’t tested to see if the users have chosen

sugar, or want spoons, saucers or biscuits. And what happens if there isn’t enough
tea for everyone? Then you have to loop back and top up the teapot, or even
reboil the kettle. This could be built into the program. That level of detail and
error correction would make the program more professional and user friendly.

I hope this shows the sort of thing you can do, and has persuaded you that
you can indeed write a program.

The final program for
making tea

Goes round until kettle
filled: 2 IF statements

A single line way of writing
two IF statements

People are ‘integer’ quanti-
ties; but this makes doubly
sure that you can make tea
for 2.

For the ‘parameter’ of tea,
you could let the user select
from a list of choices.

In the event of a major
problem you might have to
jump back to the start.

This is a repeating
‘Loop’, do it until all cups
are selected and clean and in
place.

This was going on while you
were getting the cups.

Another repeating ‘Loop’

Another example of
getting the parameter from
the user’s choice.

3

Now this isn’t written in
BASIC, and it isn’t
written in GDL, but it’s
close to both of those
two, and shows that pro-
gramming can be like
writing in English in a
slightly mathematical
style.

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 9

First Look at GDL

First Look at GDL

FROM the File menu, open any 3D object and have a quick
look at the way the Parameter window is organised. A Pop

down menu (in AC 6.0) and a vertical array of Buttons (in AC
6.5) allows you to view different script and window types. The
main scripts and windows we are concerned with are:

Master Script :– there are many housekeeping tasks such as read-
ing in Value lists, setting up Parameters, checking user Errors, de-
fining Materials, setting Flags and so on. These are read by the 3D
Script, the 2D Script and the Properties Script. If you didn’t use a
Master Script, you would have to write all these things time and
time again.

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 10

2D Symbol:- is a window into which you could paste a 2D im-
age, or draw using 2D tools, but it will only be displayed if there is
no 2D script. With GDL knowlege, you are better to write 2D
script.

2D Script:– this can be used simply to tell GDL to draw in 2D
whatever it finds in 3D (Project2), or whatever is in the 2D Sym-
bol window (Fragment2). You can (and should) use it for writing
a parametrically organised script to draw what the object will look
like (using RECT2 and LINE2). By designating Hotspots, the 2D
script can also govern how stretchy the object can be. By leaving
this script blank, the GDL object will display what ever is drawn
into the 2D Symbol window.

2D Full View :– is generated by the 2D Script.

3D Script:– the primary means of building parametric 3D ob-
jects. If the object is simple, almost all the work can done in the
3D Script.

3D View:– is generated by the 3D Script – not to be confused
with the 3D window of the main project.

Properties Script :– in which you could write Components and
Descriptor commands if the object is included in a schedule.

Value List (now called Parameter Script in 6.5):– this is the
means of creating Pop-Down menu selections in the main param-
eters box. It is read first, even before the Master Script.

Comment:- is a small text field in which you could write a small
set of instructions to your user on how to use the object, or could
record a log of the development of the object.

Preview Picture:- is a window containing a pasted in bitmap im-
age of a view of the object. It gives the user an idea of what the
object will look like in its setting, and could come from Artlantis
Render or an ArchiCAD photorendering.

Parameter table:– we also fill out the table of parameters by hit-
ting the New button, and filling in the small details. A and B are
‘obligatory parameters’ – they already exist – but we can make
many more.

First Look at GDL

GDL-Taster - parts of the GDL-Cookbook: Copyright Marmalade + David NicholsonCole ©1999, 2000 11

FIRST get acquainted with the idea of the
X, Y, Z universe that you have to work in.

All locations are defined in these coordinates.
If you want to move sideways, you ‘add’ in the
X direction. If you move forward, you ‘add’ in
a Y direction. If you move up or down, you
‘add’ in a Z direction. You can Rotate the cur-
sor and the XYZ world gets rotated too.

• The ‘G’ (global) coordinates remain fixed
at the Origin of the model. When you bring
an object into the project plan, this origin is
what decides the height of the object in the
project. The origin should be planned care-
fully – preferably at the base of the object,
and at the axis of any symmetry or rotational
axis that you perceive.

• The ‘L’ (local) coordinates are like the moving cursor in your word processor
– they travel with you, wherever you are drawing an component. Always try
to return the GDL cursor to the global origin before you start out with
another element of the model.

Working in 3D space

JUST how do you write in GDL in 3D? Well, when you are word processing,
you move your cursor to a location and start typing. Move the cursor, and

type again, and the new words appear at the new position.

With GDL, you have a 3D cursor; when you issue a 3D GDL command like
BLOCK or CONE, you will get a 3D object wherever the 3D cursor happens
to be. Move the 3D cursor to a new position and issue the same command and
now it appears in the new position.

Thus to make a chair, you can move to each corner, plant a chair leg, then
raise the cursor up to plant the seat and finally, move the cursor to plant the
back of the chair.

When you have achieved a group of things (like a bunch of chair legs), you
have completed a task. So now return the cursor to the global origin. Now you
can depart and do another task, for example the seat of the chair.

When you have finished, you can do a small 2D script so that a 2D symbol
will appear in the project plan, save the file, and you are done.

The 3D world in
which you move your
cursor

Getting Started

Go on!
Treat yourself to the
GDL Cookbook this week!

The GDL-Cookbook 2
Available from selected ArchiCAD
resellers for $39 (plus local taxes
and postage)

